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A global stability analysis of the steady and 
periodic cylinder wake 
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(Received 17 March 1993 and in revised form 23 September 1993) 

A global, three-dimensional stability analysis of the steady and the periodic cylinder 
wake is carried out employing a low-dimensional Galerkin method. The steady flow is 
found to be asymptotically stable with respect to all perturbations for Re < 54. The 
onset of periodicity is confirmed to be a supercritical Hopf bifurcation which can be 
modelled by the Landau equations. The periodic solution is observed to be only 
neutrally stable for 54 < Re < 170. While two-dimensional perturbations of the vortex 
street rapidly decay, three-dimensional perturbations with long spanwise wavelengths 
neither grow nor decay. The periodic solution becomes unstable at Re = 170 by a 
perturbation with the spanwise wavelength of 1.8 diameters. This instability is shown 
to be a supercritical Hopf bifurcation in the spanwise coordinate and leads to a three- 
dimensional periodic flow. Finally the transition scenario for higher Reynolds numbers 
is discussed. 

1. Introduction 
The flow around a circular cylinder can be considered as a prototype of the bluff- 

body wakes because of the simplicity of the boundary conditions and the complexity 
of the physical processes involved. In fact many physical mechanisms of viscous 
incompressible fluid motion can be studied in this flow, e.g. potential flow, laminar and 
turbulent boundary layers, separation, shear-layer and vortex dynamics, a near-wake 
which is dominated by nonlinear phenomena, and a far-wake which is governed by 
linear convection and dissipation processes. This complexity makes the cylinder wake 
a rewarding object of study for the experimentalist and a challenge for the theoretician. 

Because of the intensive research which the cylinder wake has enjoyed for over a 
hundred years, there exists little controversy about the main properties of the post- 
transient flow. These properties depend on the Reynolds number Re = UD/v,  where U,  
D, and v represent the oncoming velocity, the cylinder diameter, and the kinematic 
viscosity of the fluid, respectively. For Re < 5,  the steady velocity field has only one 
separation point. In the range 5 < Re < 50, a steady vortex pair at the rear of the 
cylinder grows with Re. For 50 < Re < 175, two-dimensional periodic vortex shedding 
is observed. This vortex shedding is superimposed by three-dimensional fluctuations 
for higher Reynolds numbers. These critical Reynolds numbers for the onset of 
periodicity and three-dimensionality depend on the authors and vary in a small range. 

In contrast to the asymptotic behaviour, little is known about the transients and the 
stability properties of cylinder wake. For instance, is the onset of periodicity at the 
critical Reynolds number Recrit z 50 typically a two-dimensional process or do 
infinitesimal three-dimensional perturbations lead via highly three-dimensional 
transients to the periodic solution? 

Numerical simulations (see, for instance, Pate1 1978) indicate that the two- 
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dimensional period wake is stable with respect to two-dimensional perturbations for 
Reynolds numbers up to 500. Karniadakis & Triantafyllou’s (1992) pioneering three- 
dimensional simulations yield that the wake is also globally stable with respect to three- 
dimensional perturbations which have spanwise wavelengths of x and fx  diameters for 
Re < 175. Yet it is striking that in most experimental investigations the vortices do not 
shed parallel to the cylinder axis ~ even with aspect ratios far in excess of a hundred. 
Instead, a variety of different three-dimensional vortex formations is observed 
(Williamson 1989; Konig, Eisenlohr & Eckelmann 1990, 1992; Hammache & Gharib 
1991). Parallel shedding is only achieved with carefully selected end conditions at the 
cylinder. Do the experimental observations imply that the currently available wind- 
tunnel facilities are too inaccurate for a realization of the stable two-dimensional 
periodic flow or are there some non-decaying three-dimensional processes involved? 

Another discrepancy between experimental and numerical works relates to the onset 
of three-dimensionality at the second critical Reynolds number Recrit, z. 175. 
Williamson (1 988 a, b) reports a hysteretic hard transition from two-dimensional 
vortex shedding to an irregular three-dimensional wake. In contrast Karniadakis & 
Triantafyllou (1 992) observe a soft transition to a periodic three-dimensional shedding. 

Naturally, a global three-dimensional stability analyses of the steady and the 
periodic flow is the most suitable forum to elucidate these problems. At present, only 
two-dimensional analyses of the stationary problem seem to exist, by Zebib (1987), 
Jackson (1987), and other groups. These stability analyses are based on finite- 
difference and finite-element techniques with of the order of 10000 grid points. They 
cannot easily be generalized to three-dimensional perturbations. For a discretization of 
the three-dimensional cylinder wake of the order of 1000000 grid points are needed. 
Such higii-&mensional eigenvalue problems can hardly be handled with presently 
available algorithms. These numerical problems apply even more to the Floquet 
stability analysis of the periodic flow. 

Local stability investigations of the cylinder wake (see, for instance, the review 
articles of Oertel 1990 and Huerre & Monkewitz 1990) have contributed much to the 
understanding of two-dimensional vortex shedding. These methods may also elucidate 
partial three-dimensional aspects of vortex shedding (e.g. Triantafyllou 1990). Yet they 
cannot provide insights into the global properties of the most dangerous perturbations 
and rest on simplifying assumptions of the flow. 

In order to carry out the global stability analyses, the authors have constructed a 
low-dimensional Galerkin method (Noack 1992; Noack & Eckelmann 1993, 1994~).  
Section 2 provides a brief description of the Galerkin method employed and outlines 
the numerical techniques for the linear stability analysis of the steady and periodic 
flow. In $93 and 4 results of the stability investigations of the steady and periodic 
solutions are presented. In both sections the evolution of finite perturbations in the 
framework of the fully nonlinear Navier-Stokes equations are also investigated. In 
$ 5 phenomenological models for the observed instability processes are developed. 
Section 6 summarizes and discusses the results presented. 

2. Numerical methods 
In this section the numerical methods employed for the investigations that follow are 

discussed. First ($2.1) the Galerkin method for the computation of the three- 
dimensional flow is briefly outlined. In ss2.2 and 2.3 the algorithms for the stability 
analysis of the steady solution and for the Floquet analysis of the periodic flow are 
described, respectively. 
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FIGURE 1. Coordinate system. 

2.1. Galerkin method 
The present Galerkin method generalizes the two-dimensional technique of Noack & 
Eckelmann (1991, 1992) to three dimensions employing Zebib’s (1987) ansatz for the 
incompressible flow. 

The flow is described in a Cartesian coordinate system x,y,z (see figure 1 ) .  These 
coordinates are summarized in a position vector x = (x, y ,  z). The unit-vectors in the 
x-, y-, and z-directions are denoted by I?z. t$, and I?~, respectively. The x-axis is aligned 
with the oncoming velocity USz and the z-axis coincides with the axis of the circular 
cylinder, the y-axis being perpendicular to both. The x-, y-, and z-components of the 
velocity vector u are u, u, and w. Alternatively, a cylindrical coordinate system r, q5, z 
is used where r = (x2+y2)i ,  q5 = arctan(y/x), and z coincides with the Cartesian 
coordinate. The time is denoted by t. In the following all physical quantities are 
assumed to be normalized with the cylinder radius R and the velocity U. 

According to Zebib (1987) the incompressible velocity field around a circular 
cylinder can be expressed in terms of two generalized stream functions Y and @ via 

where V x represents the curl operator. A similar ansatz is used by Busse (1991) and 
Clever & Busse (1990) for the Rayleigh-BCnard problem and for the Taylor-Couette 
flow. 

The boundary conditions at the cylinder and at infinity are fulfilled by using Zebib’s 
(1987) equations (7a)  and (7b), which read 

u = v x { Y@J + v x v x {@2z], ( 1 )  

Y+rsinq5 and @ + O  for r + m .  (3) 
In addition, we assume a spanwise periodicity with wavelength L and wavenumber 
k ,  = 2 z / L  as in the numerical simulations of Karniadakis & Triantafyllou (1992) and 
Tomboulides, Triantafyllou & Karniadakis (1992), i.e. 

and 
For the evolution equation of the generalized stream functions, the Laplace operators 
in two and three dimensions, 

Y ( r ,  q5, z) = Y(r ,  q5, z+L) @(r, q5, z) = @(r, q5, z +  L). (4) 
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are introduced. The Navier-Stokes equations can now be easily expressed as coupled 
partial differential equations for Y and @ (see Zebib’s equations (6a) and (6b) ) :  

a 2 -AAr7+@ = -AzAT,6@-&z-V x V x (U x (V X U ) ) ,  
at Re 

where u is given by (1). It should be noted that Zebib’s velocity field ansatz and his 
evolution equations generalize the two-dimensional stream-function formalism by one 
additional function @, which vanishes for a two-dimensional flow. 

A straightforward three-dimensional generalization of Zebib’s (1 987) two- 
dimensional Galerkin method yields for the lowest spanwise resolution more than 
10 000 modes.? With such a high-dimensional system, a stability analysis is hardly 
possible with the currently available computer power. Hence, we have generalized the 
low-dimensional Galerkin method of Noack & Eckelmann (1991, 1992) for the two- 
dimensional cylinder wake to three dimensions. In the two-dimensional method, the 
basic mode is defined by 

F O t  = (r-l /r)  [ 1-exp ( -__ ;;,l)]Sin#> (7) 

with d,, = 4/Rei. This mode satisfies the no-slip conditions at the cylinder and 
approaches the potential solution at infinity. Equations (2)-(4) then imply that the new 
functions 

fulfil homogeneous boundary conditions at the cylinder 

(9) 

at infinity ! P + O  for K =  1,2, (10) 

YI(K)(r, #, z )  = ! F ( r ,  #, z + L) for K = 1,2. (1 1) 

a. 
arK 

!F= ...=- F K ) = O  for ~ = 1 , 2 ,  

and in the spanwise direction 

The functions FK) can be approximated by Fourier expansions with expansion modes. 
These modes are based on the two function systems { R ~ ) ( r ) } ~ o  (K = 1,2) for the radial 
coordinate and two K-independent systems { @j(#)}jm=_m and {Z,(Z)},~_-, for the 
azimuthal and spanwise coordinates. These function systems result from mathematical 
and physical considerations outlined by Noack (1992) and Noack & Eckelmann 
(1994~) and are defined in Appendix A. It should be noted that the construction of the 
radial and azimuthal function systems differs from Zebib’s choice. The resulting 
q, J ,  Galerkin approximation for !€’(‘) reads, in the Einstein summation convention, 

where the aji”), denote the time-dependent Fourier coefficients and 
!P$i = Rr)(r )  Gj(#) Z,(Z) 

the expansion modes. The indices i, j ,  k are summed over the index sets Y = (0, 1 , . . ., I:, 
f = { - J,  . . . , 0, . . . , J } ,  and X = { - K, . . . , 0, . . . , K}.  This approximation exactly fulfils 
the boundary conditions (9)-( 1 1) for all choices of the Fourier coefficients and can 

t This number of modes is estimated assuming two expansions for Y and @ x 23 radial modes 
(N ,  = 22) x 89 azimuthal modes (No = 44) x 3 spanwise modes. The index bounds N ,  = 22 and 
No = 44 are also used in Zebib’s (1987) stability analysis. 

PK)(r, #, z ,  t )  = u$i(t) Rp)(r) Qj(#) Z,(z) for K = 1,2, (12) 
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naturally resolve the velocity field with arbitrary precision for sufficiently large index 
bounds I ,  J, and K. 

For the present stability investigations, the .%, 4 ,  approximation is chosen. This 
choice guarantees a sufficiently accurate numerical simulation of the two- and three- 
dimensional flows at moderate Reynolds numbers. On the other hand, the CPU times 
for global three-dimensional stability analyses of the steady and periodic solutions on 
a SPARCstation2 remain still reasonable. 

The equation of motion for the Fourier coefficients is derived from Zebib’s (1987) 
evolution equations ( 5 )  and (6) in a canonical Galerkin projection as follows. First, the 
Galerkin approximations (8) and (12) are substituted in Zebib’s equations. Equations 
( 5 )  and (6) are multiplied with the Hilbert-space weight function w = ~f and the 
projection modes Y$i for K = 1 and 2, respectively. The resulting terms are then 
integrated over the domain of the velocity field 52 = {(Y, 4 ,  z )  : r 2 1 and 0 6 z < L}. 
Taking the indices of the projection modes from the same set as for the Galerkin 
approximation, we have as many equations as unknown Fourier coefficients. The 
resulting system of autonomous first-order differential equations can be solved for the 
temporal derivatives of the Fourier coefficients, thus yielding a system of the form 

2 2 2  

(13) 

for K = 1,2, where the coefficients c:$, q;;iTi& pqs  of the constant, linear, and 
quadratic terms represent volume integrals over products of the projection and 
derivatives of the expansion modes. In this and all following equations the Einstein 
summation convention for the subscript is employed. Details about the Galerkin 
projection and the numerical realization of the autonomous system can be obtained 
from Noack (1992) and Noack & Eckelmann (1994~). 

The above equations and the modes, which are specified in Appendix A, uniquely 
define the XI, J , K  Galerkin method. For K =  1, (13) has two invariant subspaces: the 
subspace Z F ; ,  spanned by all Fourier coefficients with k 6 0 for K = 1 and k > 0 for 
K = 2 and with the restriction k 2 0 for K = 1 and k < 0 for K = 2. From the 
definition of Zk in Appendix A, it can be inferred that the subsets of expansion modes 
in both subspaces are simply related by a substitution of sin (k ,  z )  with cos (k ,  z )  and 
vice versa. Both reduced Galerkin methods contain all two-dimensional solutions and 
have the same stability and Floquet spectra. The corresponding eigenmodes and 
Floquet modes of the and Z ~ T > , ~  system are related by simple symmetry 
transformations. Furthermore, both systems are numerically observed to contain the 
most dangerous part of the full ZI, J ,  stability and Floquet spectra for the Reynolds 
numbers and wavenumbers considered. Therefore, we restrict the 378-dimensional 
A&1 Galerkin method chosen to the 189-dimensional Xci,l subspace, in the 
following investigations. This simplification has no impact on the dangerous eigen- and 
Floquet modes analysed but allows for carrying out the stability investigations on a 
small workstation. The results obtained with the method have been validated 
with other resolutions, namely with X& Xci, and Zci, approximations. 

For the numerical methods of the stability investigations, the quadrupol index 
( K ,  i, j ,  k)  in the autonomous system (13) is inconvenient. Mapping this index bijectively 
on a single index Z ~ ( K ,  i, j ,  k)  E { 1 , 2, . . . , N } ,  where N is the number of modes, (1 3) can 
be rewritten in the simpler form 

-a!!) d = c!~) + C [ < F ; P )  + C C q ! r ; / i . v )  a‘”’ dt t ik  aik 2jk;Zmn lm,n a i k ; lmn ,pqs  l m n  pqs 
p=1 p = l  w = l  

d 
-ai =f i (al ,  ..., uN)  = ci+li;jai+q,,i,,uiu,. d t  
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The Fourier coefficients and the coefficients for the constant, linear, and quadratic 
- p ; / 4  terms are given by an(K,i.j,h-) = al?L cn(K,i.j,k) = 4;;. l n ( K , ~ , j , k ) ) ; ~ ( ~ , , z , m , ~ ~ )  - yk;zrnn? and - q(r :a ,  4 qn(K,i, j ,  k ) ; n ( / , ,  1, m ,  n ) ,  n(", p ,  q,  s )  - 73k.inin. pqs' res~ectlvel~.  In the following, bold-face 

symbols without indices denote the corresponding N-dimensional vector of all 
components, for example the mode vector a = (a,, ..., ax)  and the flowf= ( f , ,  , . . , fx).  

2.2. Stability analysis of the steady,flow 
The stability analysis of the steady flow consists of three steps. 

In the first step, the (possibly unstable) steady solution ais) of (14) is computed. 
Fortunately, this fixed point is globally asymptotically stable on the invariant subspace 
which is spanned by the two-dimensional antisymmetrical modes for all Reynolds 
numbers considered. This subspace is spanned by all Fourier coefficients a!:!., with 
. j  > 0;  the other coefficients vanish identically. If the initial condition for (14) lies in this 
subspace, the numerical integration will always converge to the fixed point, which 
represents the two-dimensional steady flow. Convergence is typically achieved within 
100 time units ( R / U ) ,  starting from the origin of the mode space, and is checked by 
requiring that the right-hand side of (14) practically vanishes, i.e. is less than 

> 

represents the Jacobian of the flowfat the fixed point a@).  Its elements are given by 

(15) 
With this matrix, the evolution equation for the deviation of the steady solution 
a* = a - a(') reads 

In the second step, the stability matrix is calculated. This matrix S = (l&) - 

= l i ; j  + (q i ;  j ,  + q i ;  Ir ' ,  J a?). 

d -a: = f ( a l ,  . . . , a,,,) = l:j a; + qiij, a; a:. 
dt 

In the final step, the eigenvalues A, of the stability matrix are computed, using the 
subroutines BALANC, ELMHES, and HQR from Press et al. (1986), in this order. The 
accuracy of the numerically obtained A, is of the order of and is checked for each 
spectrum. The eigenvalues are generally complex and expressed in the form 
A, = n(cZ + iSt,), where CT, denotes the growth rate and the St, the Strouhal number, 
except for the sign. The eigenvalues are assumed to be ordered with respect to their 
growth rates, i.e. C T ~  3 C T ~  3 . . . . The corresponding eigenvectors a(')- ' are calculated 
with the inverse iteration method and are normalized to yield an Euclidean norm of 
unity. Without loss of generality the eigenvector of a real eigenvalue can be considered 
to be real. In this case the normalized eigenvector is indeterminate by a factor & 1. The 
temporal evolution with respect to the linearized autonomous system is given by 
a(S)% ' e"it. In contrast, the normalized eigenvectors of a complex eigenvalue are 
generally complex and indeterminate by a complex factor of unit modulus, which can 
be interpreted as a phase shift for one revolution. In the stability analysis, we consider 
only the real part of the time-dependent solution a(", ' e"r+i"ti of the linearized system. 
Obviously, if all growth rates CT, are negative, all perturbations decay and the steady 
solution is linearly stable. If there exists one eigenvalue with a positive CT,, 'almost all' 
perturbations will generally grow and the steady solution is unstable. It should be 
noted that the eigenvectors and solutions of the linearized system, called eigenmodes in 
the following, correspond to velocity fields in the physical space via equations (l), (7), 
(8), (12), and the index map 17. 

We distinguish between two-dimensional eigenvalues corresponding to two- 
dimensional eigenvectors and three-dimensional ones of eigenvectors which represent 
three-dimensional velocity fields. The first are denoted by hizD) = ~ ( c T ! ' ~ )  + iStlzD)), while 
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the latter eigenvalues have a (30) superscript. Both groups are assumed to be ordered 
with respect to the grow rates, i.e. cryD) 3 crr’’) 3 . . . and crFD) 3 3 . . . . 

2.3. Floquet analysis of the periodic,flow 
The stability analysis of the periodic flow (the Floquet analysis) is carried out in three 
steps for a given Reynolds number and a fixed spanwise wavelength. 

First, the periodic solution d P ) ( t )  of (14) is numerically computed. For all Reynolds 
numbers considered, the two-dimensional periodic solution is asymptotically stable in 
an invariant 63-dimensional subspace which is spanned by the two-dimensional modes 

,,. Hence, sufficiently long transients finally converge to the (possibly unstable) 
periodic solution. Convergence is typically achieved in 100 to 200 time units. In 
contrast, the three-dimensional periodic solution does not lie in a linear subspace and 
can hence only be computed if it is stable. 

In the second step, the Floquet matrix is calculated. For this purpose, the 
fundamental solution of the first variational form 

for the infinitesimal perturbation a’ on the T-periodic solution a(P)  is numerically 
computed. In (1 7), af/aa represents the T-periodic Jacobian matrix off evaluated 
at a@).  The solutions of (1 7) can be symbolically expressed by the map Qt : P H B” 
with a(t) = Qt(a(0)). With this map, the canonical choice for the fundamental system 
is given by t ~ { Q t ( i ? m ) } ~ = = l ,  e“, being the mth unit vector in the mode space gN.  

are computed 
from the N x N Floquet matrix F with the columns QT(i?,) for m = 1,2, . . . , N .  The 
same numerical algorithms as in the stability analysis of the steady solutions are 
employed. The eigenvalues ,urn are called Floquet multipliers and the corresponding 
Floquet modes atp)lrn(t) := Qt(a(p),m) satisfy afp)lm(T) = ,urn C Z ( ~ ) / ~ ( O )  by construction 
(see Jordan & Smith 1988, $9.2). Under generic conditions, every solution of (17) can 
be expressed by a’(t) = cz=, a,  d p ) l m ( t )  with time-independent coefficients a,. The 
contribution a,a(p)/m(t) vanishes as t+ 00 if lp,l < 1 or explodes if I,u,l > 1. 
Therefore, the Floquet multipliers are assumed to be ordered with respect to their 
moduli (,uJ 6 Ip21 6 . . . . For periodic motion, there always exists a + 1 multiplier which 
corresponds to a phase shift on the limit cycle. This contribution is neglected in what 
follows, since this mode is immaterial for the Poincari stability properties of the limit 
cycle. It is important to note that the Floquet modes are derived for the mode space 
but can also be defined in the physical space. 

In analogy to the eigenvalues of the stationary stability problem, we distinguish 
between two- and three-dimensional Floquet multipliers which are denoted by 
,u@O) = ,ur3 ( 2 0 )  I + i,u!2D) 2, 2 and ,u(3D) = A, (30) I + ip/”), respectively. Both groups are ordered 
with respect to the moduli in the same manner as the whole Floquet spectrum 
b I } I = I , .  . . , N ’  

Finally, the eigenvalues ,urn and the corresponding eigenvectors 

3. Stability of the steady flow 
In $93.1 and 3.2 the stability of the steady flow around a circular cylinder with 

respect to two-dimensional and three-dimensional infinitesimal disturbances is 
investigated. Finally, the evolution of finite disturbances is described in $3.3. 
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Re=5 Re= 10 Re=25 
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FIGURE 2. Two-dimensional stability spectra of the steady solution for Re = 5,  10, and 25. Each 
solid square represents one eigenvalue A:”) = T ~ ( C ~ * ~ )  + iStjZD) 1. 

Re=50 Re= 100 Re =200 

0.2 

St 0 

-0.2 

0 0 fs 

FIGURE 3 .  Same as figure 2 but for Re = 50, 100, and 200. 

3.1. Two-dimensional stability analysis 
The steady flow around a circular cylinder has been subject to a variety of global, two- 
dimensional stability analyses (e.g. Jackson 1987 ; Zebib 1987 ; Morzynski & Thiele 
1991). These investigations yield the most dangerous eigenvalue pair Al,  = ~ ( C T ,  k iSt,) 
with the corresponding eigenmode and are based on accurate finite-difference or finite- 
element methods with approximately 10000 grid points. The present Galerkin method 
with only 63 two-dimensional expansion modes allows for the first time some insight 
into the most dangerous part of the stability spectrum and higher-order eigenmodes to 
A,, n > 1 .  This insight and the low computational costs are paid for by a slight loss of 
the accuracy of ,Al, as compared to grid-based stability analyses. 

Figure 2 displays the spectra of the stable steady flow at low Reynolds numbers. The 
most pronounced characteristics of the spectra are the nearly parabola-shaped 
boundary, the parabola becoming narrower towards the real axis with decreasing 
Reynolds number. This behaviour of the spectrum is typical for convection-dissipation 
systems, 1/Re  being considered as the viscosity (see Appendix B). 

It should be noted that the spectra for low Reynolds numbers do not contain a 
pronounced complex-conjugated eigenvalue pair A,, = x((r, k iSt,), which would 
define a characteristic frequency for the decaying disturbances. This feature explains 
Sreenivasan, Strykowski & Olinger’s (1991) experimental observation that the von 
Karman vortex street cannot be excited by periodical perturbations for Re < 25, even 
with very large amplitudes. Such an eigenvalue pair leaves the ‘cloud’ of the other 
eigenvalues only for Reynolds numbers somewhat above 30. These eigenvalue 
migrations lead to mode jumps which had already been discovered by Zebib (1987). 

Figure 3 displays the stability spectra for the Reynolds numbers Re = 50, 100, and 
200, i.e. when the asymptotic solution is steady, periodic, and non-periodic, 
respectively. With increasing Re,  a single complex-conjugated eigenvalue pair moves to 
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r/T=O 

1 I4 

214 

314 

FIGURE 4. Eigenmode of the complex-conjugated eigenvalue pair A::) = f niStYD) for Re = Recrlt. 
Column (b )  illustrates the streamlines in the (x,y)-plane of the eigenmode for the instants t / T  = 0, 
i, g, from top to bottom, where T = 2/StYD) is the period. This eigenmode has been multiplied by 
the arbitrary factor 3.5 after the normalization to yield reasonable velocity amplitudes. Column (a) 
displays the streamlines of the eigenmode superimposed on the steady flow at the same instants. In 
both columns the streamlines represent Y-values which are integral multiples of 0.5. 

the right, crossing the imaginary axis at Reerit = 54 with the Strouhal number value 
Stcrit = 0.149, and remains the only contribution to the cr > 0 half-plane. It should be 
noted that the discreteness of the spectrum including the non-degenerate, isolated 
eigenvalue pair is not a numerical discretization effect but can be derived from 
mathematical separability arguments (see Noack & Eckelmann 1992). 

The crossing of the (isolated non-degenerate) eigenvalue pair with cr = 0 represents 
a Hopf bifurcation and marks the onset of periodicity in the cylinder wake. The present 
values of Recrit, Stcrit of this bifurcation significantly exceed the numerically obtained 
values of Zebib (1987) of Recrit = 45, Stcrit = 0.11-0.13, and of Jackson (1987) of 
Recrit = 46.184, Stcrit = 0.13804, and the experimentally determined values of 
Provansal, Mathis & Boyer (1987) of Recrit = 47, Stcrit = 0.12 (Roshko frequency). 
The delayed onset of vortex shedding and the too-large frequency result from an 
insufficient far-wake resolution of the present Galerkin approximation and are 
explained in Noack & Eckelmann (1994~).  As expected, the Galerkin method yields 
significantly better values with more expansion modes, e.g. Recrit = 50 and 
Stcrit = 0.132 for 117 modes ( I  = 8, J = 6). Yet increasing the number of modes does 
not affect the qualitative conclusions drawn from the stability investigations. Hence, 
the Galerkin approximation defined in 92.1 suffices. A detailed convergence analysis of 
Recrit, Stcrit, and other quantities for index bounds I ,  J up to 10 was carried out by 
Noack & Eckelmann (1994~). 
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Re=50 Re= 100 Re =200 

St 0 

-0.2 

(b) 0.2 

St 0 

-0.2 

(4 0.2 

St 0 

-0.2 

0.04 0 0.04 -0.04 0 0.04 -0.04 0 0.04 
CT CT CT 

FIGURE 5. Stability spectra of the steady solution for Re = 50, 100, and 200 and for (a) k, = 0.5, 
(b)  1, and ( c )  2. The solid squares represents k,-independent, two-dimensional eigenvalues 

= n(rrlzDj + iStjZD’), while the open ones refer to three-dimensional eigenvalues 4”) = 
n(4”) + lsty’). 

The eigenmode of A l , 2  = fnSt ,  at Re = Reerit is illustrated in figure 4 (column b). 
The originally normalized eigenmode has been multiplied by an arbitrary factor of 3.5 
in order to yield velocity amplitudes which are typical for the von KArmin vortex 
street. The streamlines of the eigenmode indicate a row of extended vortices with 
alternating sign on the positive x-axis convecting downstream. Superimposing this 
eigenmode on the steady flow yields a velocity field which is similar to the vortex street 
behind a circular cylinder at higher Reynolds numbers (see column a of figure 4). These 
results confirm Jackson’s (1987) and Morzynski & Thiele’s (1991) stability inves- 
tigations with high-dimensional grid methods and show that the low-dimensional 
Galerkin method correctly describes the physical processes of the cylinder wake. 

3.2. Three-dimensional stability analysis 
The low-dimensional Galerkin method allows for the first time a global, three- 
dimensional stability analysis of the steady cylinder wake. Figure 5 shows the spectra for 
the Reynolds numbers Re = 50, 100,200 and for the wavenumbers k, = 0.5, 1’2. For 
somewhat larger wavenumbers than 2 and for low Reynolds numbers, say below 30,  
the three-dimensional disturbances have small (negative) growth rates and are 
dissipated much more rapidly than their most dangerous two-dimensional counterparts. 
The spectra (figure 5)  show two groups of dangerous three-dimensional eigenvalues 
(i.e. = n ( ~ r l ~ ~ ) + i S t , )  with nj30) > 0) in addition to the two-dimensional 
eigenvalues. The first group (see second and third columns of figure 5a, b) is a complex- 
conjugated pair A::) = n(aYD) f iStyD)) which crosses the (T = 0 axis for k, = 1 and for 
sufficiently large Re-values. This pair converges to Ai2f) = n(@”) f iSt?”)) in the limit 
k,+0. It should be noted that StyD) remains smaller than StyD) for all Reynolds 
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FIGURE 6. Eigenmode of the complex-conjugated eigenvalue pair A::) = ~(0.0285 ii0.161) for 
Re = 100 and k, = 0.5. Column (6) illustrates the velocity field of the eigenmode in the z = 0 plane 
for the instants t / T  = 0, $, i, and t. This eigenmode has been multiplied by the arbitrary factor 2 after 
the normalization. In column (a)  the steady solution is added to this mode. The arrows are parallel 
to the tangential velocity component (u, u 0) in the z = 0 plane; their length is half the magnitude of 
this velocity component, i.e. 0.5(uZ+v2)~\n the column (a)  and twice as much in column (h).  This 
implies that an arrow whose length represents the cylinder diameter corresponds to two velocity units 
in (a)  and to one in (b). The normal velocity component (0, 0, w) of the eigenmode vanishes identically 
in the z = 0 plane. 

numbers considered and all wavenumbers. Similarly, the three-dimensional growth 
rate fly”) is - within the numerical accuracy - always smaller than the two-dimensional 
one fly”). Hence, the first group of dangerous three-dimensional eigenvalues form 
curves which are parametrized by k,  and terminate in the dangerous two-dimensional 
pair h$:i. for k, +. 0. Therefore the onset of periodicity for Re > Reerit is generally not 
a two-dimensional process but is accompanied by a continuum of growing three- 
dimensional disturbances. Such a continuum of unstable three-dimensional eigenmodes 
has also been discovered by Triantafyllou (1990) in a three-dimensional stability 
analysis of a parallel shear flow. In this analysis, the three-dimensional modes are 
associated with an unstable two-dimensional eigenmode in the limit k, + 0. 
Triantafyllou also proved that the three-dimensional modes must have a lower growth 
rate than the associated two-dimensional mode - in agreement with our numerical data 
for fly”) and cry”). 

Figure 6 visualizes the temporal evolution of such a three-dimensional eigenmode 
for k, = 0.5 and Re = 100. This originally normalized eigenmode has been multiplied 
by the arbitrary factor of 2 using the same criterion as for figure 4. Interestingly, the 
column (b) of this figure displays vortices on the x-axis with alternating sign, which 
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convect downstream. This flow is very similar to the two-dimensional eigenmode 
presented in figure 4 for a lower Reynolds number. Superimposing this three- 
dimensional eigenmode on the steady solution, a von Karman vortex street is obtained 
in column (a) of figure 6 .  From figure 7 the three-dimensional eigenmode can be 
inferred as two local shedding cells centred at the z = 0 and z = :L planes with opposite 
phase. These shedding cells are separated by planes z = const in which the u,u 
components identically vanish and the cells ‘communicate ’ only with a non-vanishing 
w flux. These local shedding cells are associated with a pair of two counter-rotating 
vortices oriented in a downward direction as can be seen from figure 8. The qualitative 
structure of the eigenmode of hi::) does not significantly depend on the Reynolds 
number or the wavenumber. These vortex pairs were also seen in experimental flow- 
visualizations for Re = 200 by Konig (1993). 

The second group of dangerous three-dimensional eigenvalues is given by 
hfW = .,yo) > 0 (see last column in figure 5c). The corresponding eigenmode is 
shown in figures 9 and 10. This mode introduces alternately a backward and forward 
flow in the near wake (see figure 9). The back view in figure 10 displays a quadrupol- 
like structure of the v ,w  components in the near wake. It should be noted that this 
eigenmode only introduces a three-dimensionality but not a new frequency to the 
perturbations of the steady solution. 

This group of positive eigenvalues assumes its maximal growth rates for k, % 1.75 
and for Re > 170. Interestingly, detailed numerical investigations reveal that this real 
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FIGURE 8. Same eigenmode as in figure 6, but visualized for t = 0 and in the planes x = 0, 2 ,  4 and 
6. The arrows illustrating the tangential velocity component (0, v ,  w) with respect to the view plane 
x = const are twice as large as in figures 6 and 7, i.e. their lengths are (uz  + wZ$ in the (a)  and 2(vz + w2$ 
in (b). The visualization of the velocity component (u,  0,O) normal to the x = const planes by circles 
is omitted in this figure. 

eigenvalue only assumes a positive growth rate when the corresponding Floquet 
analysis of the periodic solution (with the same Re- and k,-values) indicates a three- 
dimensional instability of the two-dimensional periodic flow (see $4.2). This correlation 
between stability and Floquet analyses is - at first sight - very surprising. This 
coincidence implies that small three-dimensional perturbations of the steady flow, 
which are described in the framework of the linear stability theory, already 'feel ' the 
three-dimensionality of the asymptotical solution, to which they finally converge. This 
link makes the correlation between the stability and Floquet analyses plausible. In fact, 
neither the real eigenvalue hrD) > 0 nor the corresponding real Floquet multiplier 
p r D )  > 1 (see figure 15) introduce a new frequency to the cylinder wake and the 
asymptotical flow is strictly periodic in a small-Reynolds-number interval after the 
onset of three-dimensionality. This shows that global stability analyses of unstable 
steady flows may be very powerful tools for predicting a variety of features of the 
corresponding asymptotical flows. 

3.3. Evolution of Jinite disturbances 
In $3.1 the onset of two-dimensional vortex shedding is shown to be caused by a Hopf 
bifurcation. Provansal et al. (1987) and Sreenivasan, Strykowski & Olinger (1987) 
experimentally observed that the transient flows for Re = Reerit are well described by 
Landau's model (see Landau & Lifshitz 1987) for a supercritical Hopf bifurcation. In 
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FIGURE 9. Eigenmode of the real eigenvalue = ~0.0016 for Re = 200 and k, = 2. This eigenmode 
is also multiplied by 3.5 and visualized in the same manner as the mode in figure 7. 

this section the validity of the Landau model is numerically investigated. Three- 
dimensional disturbances are neglected. 

Landau proposed a simple approximate description of small transient disturbances 
in the neighbourhood of a supercritical Hopf bifurcation. Let u(’)(x) be the steady flow 
and d e ) ( x )  be the eigenfunction (see figure 4) corresponding to the dangerous complex- 
conjugated eigenvalue pair & = f i w  at Re = Recrit. Then the time-dependent 
perturbation u‘ = u - u(’) is approximately given by the real part of A ei4zde), where A 
denotes a slowly varying real amplitude and 4 a time-dependent phase of the 
oscillation. The temporal evolution of these quantities for Re z Recrit is described by 

d 
dt 
- A  = uA-/3A3, 

CT = a(Re- Re,,,), (20) 
where the amplification-rate u, the (non-normalized) real part of A,,,, is assumed to 
vary linearly with Re with the proportionality constant a. The effect of the nonlinear 
terms is described by the positive damping constant /3 and the frequency-deviation 
parameter y, both of which are considered to be independent of the Reynolds number. 

The set of parameters, w ,  a, /3, 8, which completely specifies the Landau model, may 
be normalized in different ways. The values which result from a non-dimensionalization 
with the velocity Ucrit (corresponding to Recrit) and the cylinder radius R - like in the 
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FIGURE 10. Same eigenmode as in figure 9, but visualized in the planes x = 0, 2 ,  4, and 6. Row (b) 
displays the eigenmode, whereas in (a) the steady flow is added to this mode. The arrows are aligned 
with the tangential velocity component (0, v, w) with respect to the view planes x = const. Their 
lengths are (vz + wz)i in both (a) and (b). The u-component is not illustrated in this figure. 

Galerkin method - are denoted by the superscript (n)  (for numerical). If the 
normalization quantities are UCTi, and the cylinder diameter D, the corresponding 
superscript is (c) (for convection). When D and the kinematic viscosity v are used, the 
non-dimensionalized quantities or denoted with the superscript ( d )  (for dissipation). 
These three sets of non-dimensionalized parameters are related via 

In the following, the parameters of the Landau model are computed with the 
stability analysis and the asymptotical periodic solutions a@) of the autonomous 
system (14). With Sterit = 0.149 the onset frequency is given by w(') = 2nStcTit = 0.936. 
In order to determine a, the growth rates n1 are numerically computed for various 
Reynolds numbers around Re,,,, (figure l l a ) .  The slope for the least-square line 
displayed for the n,-Re relationship is given by (1.27+4) x The S-shaped 
deviation of the n,(Re) data from the least-square line in figure 11 seems to be a 
truncation-error effect of the present Galerkin method, since it has not been found with 
the other Galerkin methods mentioned in 52.1. Noting that de) = nn,, we obtain 

&) = 0.003 99. 
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FIGURE 1 1 .  Growth rate and amplitude of oscillation in the neighbourhood of Re,,,,. In (a) the 
numerically computed values for the growth rate rl in terms of the Reynolds-number difference 
A Re = Re- Rec,,, is illustrated with solid circles. The straight line is a least-square fit through the 
displayed (A Re, a,) points. In (b)  the amplitude of the oscillation is shown in terms of A Re. This 
amplitude is defined by (24). The parabola curve is a least-square fit through the (A Re, AZD) points 
shown, with A Re > 0. 

In order to determine the damping constant /Icc), the asymptotic amplitude A,,  is 
derived from (18) and (19): 

For Re > Recrit we define the saturated amplitude of oscillation A,,  to be the time- 
averaged distance of the periodic trajectory t H dP) to the fixed point &), i.e. 

A,,  = T J o  l T  d t [ C ( ~ j ~ ) - @ ) ~ ] ,  
i 

where T = 2 / S t  is the period in terms of R / U  units. This quantity can be shown to be 
proportional to the velocity amplitudes at any point in the wake region for Re = Reerit. 
Figure 11 (b) clearly displays the square-root dependency between the numerically 
obtained amplitude A,,  of the Galerkin method and the Reynolds-number difference 
Re- Reerit. A least-squares fit yields A,,  = (0.376&0.009)(Re- Reerit):. With (23) the 
damping constant is computed to be 

/I(’) = 0.0282. 
For the computation of Y ( ~ ) ’ ,  the relationship between the asymptotic Strouhal 

number St,, and Re is derived from (19) and (23): 

This linearity is confirmed by the numerical data presented in figure 12, the slope is 
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FIGURE 12. Strouhal-number differences St,, - StCrit and St, - StCrit in the neighbourhood of Recrit. 
The solid circles represent numerically obtained values of St, in terms of Re whereas the stars refer 
to the Strouhal number St,, of the asymptotical periodic solution. The straight lines are least-square 
fits for both groups of Strouhal-number values using only the displayed data. 

calculated with a least-square fit to be (2.27 k 0.05) x 
known parameters, the frequency deviation is found to be described by 

With (25) and the already 

7“) = 0.103. 
To compare these results with other publications, we transform the above parameters 

via (22): 

The onset frequency dd)  has been compared with experimental and numerical 
investigations of other authors in $3.1. The dd)-value is in very good agreement with 
0.2 of Provansal et al. (1987) and of Sreenivasan et al. (1991). The P@)- and y(d)-values 
depend on the choice of the reference amplitude and cannot be compared with the 
experimental values. The ratio f d ) / P @ )  is independent of the scaling of the amplitude; 
the predicted ratio of 3.68 is closer to the value 2.9 of Sreenivasan et al. than to the 
value of 0 of Provansal et al. (Note that ;Ir = /3(d) and ili = - Y ( ~ )  in Sreenivasan et al.’s 
and Provansal et al.’s notation. Hence li/lr = -fd)/,P).) 

The Landau model has been shown to be a good description for the onset of the two- 
dimensional vortex shedding. However, the validity of this model is restricted to two- 
dimensional perturbations although the continuum of three-dimensional eigenmodes 
has been shown to be of equal importance in $3.2. These three-dimensional effects may 
be incorporated in a Ginzburg-Landau equation which has been successfully applied 
by Albarede, Provansal & Boyer (1990), Albarede & Monkewitz (1992) and other 
authors to model vortex formations behind a circular cylinder. 

w ( ~ )  = 50.5, = 0.215, /3(d) = 1.52, y‘d’ = 5.59. 

4. Stability of the two-dimensional periodic flow 
In this section results of the first global Floquet analysis of the two-dimensional 

periodic cylinder wake are presented. This analysis has been made possible by finding 
a low-dimensional Galerkin method for the three-dimensional flow. In $$4.1 and 4.2 
the evolution of infinitesimal two-dimensional and three-dimensional disturbances is 
described. In $4.3 nonlinear effects on self-amplified finite perturbations are considered. 

4.1. Two-dimensional Floquet analysis 
In the two-dimensional Floquet spectra (see figure 13) the multipliers remain inside the 
unit circle for all Reynolds numbers considered. The spectral radius of the Floquet 
spectra, i.e. lpyD)I, is typically 0.60f0.05. In other words the amplitude of a 



314 B, R. Noack and H .  Eckelmann 

Re= 100 Re = 200 Re=300 

-1 0 I -1 0 1 -1 0 1 
Pr P r  Pr 

FIGURE 13. Two-dimensional Floquet spectra of the periodic solution for Re = 100, 200, and 300. 
Each solid square represents one multiplier pjZD) = /~l"f) + i,u.l2?. 
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FIGURE 14. Floquet mode of the complex-conjugated multiplier pair = -0.222+i0.517 for 
Re = 100. Column (a) displays the streamlines of the periodic flow; column (b) illustrates the Floquet 
mode. 

perturbation is reduced by approximately a factor of 0.6 per period - neglecting the 
phase shift on the limit cycle. Hence, the two-dimensional periodic flow is 
asymptotically stable with respect to two-dimensional disturbances. This stability was 
to be expected from the two-dimensional numerical simulations of Pate1 (1978) which 
yielded strictly periodic flows up to a Reynolds number of 500. 

The present Floquet analysis has a variety of implications for the effect of periodic 
excitations on the cylinder wake for the regular Reynolds number regime 
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FIGURE 15. Floquet spectra of the periodic solution for Re = 150, 200, and 250 and for (a) k, = 0.1, 
(b) 1.75 and (c )  3.0. Each solid square represents one two-dimensional multiplier pizD) = p~ff’+iptf:‘, 
whereas the open symbols refer to three-dimensional ones ,43D) = ,@f) + ipt3;). 

50 < Re < 175. First, the excitation must be large in order to maintain significant 
deviations from natural vortex shedding, since all perturbations are strongly damped. 
This expectation is confirmed by the sound excitation experiments of Detemple-Laake 
& Eckelmann (1989). Secondly, one should expect a large variety of different excited 
vortex streets depending on the kind and amplitude of oscillation since there is no 
single dangerous real multiplier with ] ,~,12~)1 + IppD)I 3 . . . or a multiplier pair 
I&:)\ 9 I,uf”)I 2 . . . , but many multipliers with I , u F ~ ~ ) I  - l,uyD)J. In fact, Detemple-Laake 
& Eckelmann (1 989) could experimentally distinguish 12 topologically different kinds 
of periodically forced vortex streets. Thirdly, the structure of the excited perturbations 
may be inferred from the Floquet modes (or linear combinations thereof). Figure 14 
displays the most dangerous Floquet mode for Re = 100. This mode represents a 
vortex formation which slowly convects downstream. Superimposing this mode on the 
vortex street with a speed of some 0.85 leads to beating phenomena in the local velocity 
amplitude. This was also found by Detemple-Laake & Eckelmann (1989). 

4.2. Three-dimensional Floquet analysis 
In this section the evolution of three-dimensional perturbations on the periodic 
cylinder wake is investigated employing the Floquet analysis. Figure 15 displays the 
Floquet spectra for three Reynolds numbers Re = 150, 200, and 250 and three 
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FIGURE 16. Stability diagram for the onset of three-dimensionality. The thick curve represents the 
neutral stability curve in terms of Re and k, for the standard Galerkin method. In addition, a neutral 
stability curve (thin line) for the very low-dimensional X:;, Galerkin method is included for 
comparison. Both stability curves are interpolated from 25 Floquet spectra for Re and kz values which 
are integral multiples of 25 and 0.25, respectively. 

spanwise wavenumbers k, = 0.1, 1.75, and 3.0. Each Floquet spectrum consists of a 
k,-independent two-dimensional contribution, discussed in the previous section, and 
k,-dependent three-dimensional multipliers. For large spanwise wavenumbers (here 
k, = 3) ,  i.e. small wavelengths, the three-dimensional contribution lies in a small 
neighbourhood around the origin (covered by the two-dimensional spectrum in figure 
15). This means that spanwise structures which are small as compared with the cylinder 
diameter are rapidly dissipated by viscosity for all Reynolds numbers considered. This 
dissipation effect explains why experimental flow visualizations do not show spanwise 
structures which are small compared to the cylinder diameter in the regular and 
transitional Reynolds number range. 

For small wavenumbers (here k, = O.l) ,  i.e. large wavelengths, such a dissipation 
mechanism is lacking and the spectral radius I,uyD)I is numerically observed to converge 
to unity for k, + 0. This implies that the two-dimensional periodic flow is only neutrally 
stable with respect to large-scale vortex deformations. This neutral instability is found 
for Reynolds numbers in the regular and transitional range. In experimental flow 
realizations, the end conditions may hence be expected to ‘excite’ these neutrally 
stable large-scaled vortex deformations in the regular Reynolds-number regime - in 
agreement with the observation of Chevron patterns, slanted vortex shedding, etc. 
(Williamson 1989; Konig et al. 1990; Hammache & Gharib 1991). Yet this 
interpretation of the theoretical results must be viewed with caution, since the detailed 
characteristics of the Floquet spectrum are certainly different for the periodic 
boundary condition assumed in the spanwise direction compared to the spectrum for 
vortex shedding behind a finite cylinder bounded by two end planes. 

The distinguished non-vanishing finite wavenumber is kZcri,, = 1.75, corresponding 
to a wavelength of 1.80 diameters. For this wavenumber the onset of exponentially 
growing three-dimensional perturbations is observed for the lowest Reynolds number 
of Recrit,, = 170. This onset of three-dimensionality is caused by a positive Floquet 
multiplier leaving the unit circle (see figure 15b). Figure 16 shows the corresponding 
neutral stability curve (thick line) in terms of the Reynolds number and spanwise 
wavenumber. For all (Re, k,) values on this curve, the positive Floquet multiplier just 
crosses the unit circle. The wavenumbers k,  of amplified perturbations lie inside the 
thick tongue-shaped stability curve for a given Reynolds number. 

Summarizing, the Floquet analysis predicts an absolute three-dimensional instability 
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FIGURE 17. Floquet mode of the multiplier p~3D'  = 1.28 for Re = 200 and k, = 1.75. Column (a )  
displays the periodic solution and column (b) illustrates the velocity field of the Floquet mode in the 
z = 0 plane for the instants t / T  = 0, +, i, and i. This mode has been multiplied by the arbitrary factor 
2 after the normalization. The lengths of the arrows are (u'+ v'$. 

which introduces a spanwise waviness of the von Karman vortices for Re > Recrit, and 
kZcrZt,2 = 1.75. These three-dimensional fluctuations have been experimentally observed 
by Hama (1957), Williamson (1988b) and many other authors. The critical Reynolds 
number of 170 agrees well with Williamson's (19886) value of 178. Also the spanwise 
wavelength of 1.8 diameters deviates by less than 10 % from the value of 1.7 diameters 
experimentally obtained by Noack, Konig & Eckelmann (1993) with a smoke-wire 
technique. Karniadakis & Triantafyllou (1992) choose a similar wavenumber of k, = 2 
corresponding to a wavelength of fn diameters in their numerical simulations. For this 
wavelength they observed an asymptotically stable three-dimensional flow for 
Re  > 210. The stability diagram (figure 16), predicts the transition at  the slightly lower 
value of Re = 205 for k, = 2, since the neutral curve intersects the k, = 2 line at this 
Reynolds number. Hence, Karniadakis & Triantafyllou's and our results for the onset 
of three-dimensionality are in excellent agreement. 

The critical Reynolds number Reerit and kZCrZt,2 predicted by the present Afgi,l 
Galerkin method deviate by only some 5 %  from the experimental values, while the 
theoretical Strouhal numbers significantly exceed the experimental results for Re - 200 
(see figure 20). Even the much coarser Z'ci, Galerkin method with only 75 (!) modes 
predicts an absolute three-dimensional instability associated with a positive Floquet 
multiplier. The predicted critical point, Recrit,, = 152 and k,  . = 1.71, compares 
reasonably well with the experimental data. The corresponding F&ral stability curve 
is the thin line in figure 16. This curve deviates considerably from the &?Ti, ,-curve in 
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FIGURE 18. Same Floquet mode as in figure 17, but visualized for t = 0 and in the planes z / L  = 0, 
$, $, and a. Column (b) shows the Floquet mode, and in column (a) this mode is superimposed on the 
periodic flow. The length of the arrows and radii of the circles are half the velocity component 
tangential and normal to the view plane 5 = const in the (a) and twice as much in (b). 

the same figure, particularly for Re > 250. This discrepancy is caused by the insufficient 
wake resolution of the coarse Xci, Galerkin method. This method resolves only a 
part of the near wake, the numerical shedding frequency being some 20 % too large. 
Hence, the transition process seems to be located in the near wake and appears to be 
rather insensitive to the temporal periodicity of two-dimensional vortex shedding. 
These circumstances explain why the three-dimensional Floquet analysis can be carried 
out with comparatively small maximal orders I = 6 and J = 4 for the radial and 
azimuthal modes. Naturally, an increase of the spanwise order K = 1 does not yield 
improved stability results, since the stability theory predicts that the z-dependency of 
the three-dimensional perturbations is incorporated in the complex factor exp (ik, 2). 

Another implication of the present Floquet analysis is that the onset of three- 
dimensionality does not introduce a further frequency to the flow, since the dangerous 
Floquet multiplier is real and positive. In fact, Karniadakis & Triantafyllou observe a 
periodic three-dimensional solution after the instability of the two-dimensional one. 
Their results are confirmed with the present Galerkin method. 

To elucidate the mechanism behind the three-dimensional instability, the Floquet 
mode of p y D )  is visualized in figures 17, 18, and 19 for Re = 200 and k, = 1.75. The 
velocity fluctuations of this mode are seen to be concentrated in the near wake, where 
the curvature of the streamlines and local centrifugal accelerations of the fluid particles 
are largest. At z = 0 the u,zi components are mostly aligned with the periodic vortex 
shedding, whereas at z = $L the mode generally interferes destructively with the von 
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FIGURE 19. Same Floquet mode as in figure 18, but visualized for t = 0 and in the planes x = 0, 2, 
4, and 6. Row (b)  illustrates this mode; in row (a) the periodic solution is added. In both (a) and (b) 
the length of the arrows is (v2+w2$.  The visualization of the velocity component u by circles is 
omitted in this figure. 

Karman vortex street (see figures 17 and 18). These shedding cells communicate 
through the planes z = $5 and z = iL via a spanwise fluid transfer. In figure 19, the 
three-dimensional flow seems to be characterized by a vortex pair oriented in a 
downward direction. 

The spatial structure of the Floquet mode suggests that the onset of three- 
dimensionality seems to be caused by a near-wake instability as opposed to a 
stagnation-line or Gortler-type boundary-layer instability and in contrast to a far-wake 
instability by slow self-amplified vortex deformations. Unfortunately, this mode is 
topologically too complex to estimate the Recyit,, or kZClit,2 from an already known 
instability process. 

4.3. Evolution of finite disturbances 
The Floquet analysis of $4.2 predicts for Re > Reerit,2 and k ,  z 1.75 an exponential 
growth of the infinitesimal disturbances around the limit cycle G, which represents 
two-dimensional vortex shedding. This linear stability theory, however, does not 
include nonlinear effects which prevent the explosions of finite disturbances. 
Simulations of the autonomous system (14) show that the trajectories starting near the 
unstable limit cycle converges to another limit cycle 4, which corresponds to the three- 
dimensional periodic wake already investigated by Karniadakis & Triantafyllou 
(1 992). In this section the transition from two-dimensional to three-dimensional vortex 
shedding is interpreted in the framework of the dynamical-system theory. 

First we determine if the transition is soft or hard, i.e. occurs continuously or with 
a hysteresis in terms of the Reynolds number. For this purpose three observables are 
considered: the Strouhal numbers St,, and St,, for the limit cycles &, and 4, 

11-2 
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FIGURE 20. Amplitude of the three-dimensional fluctuations AOD (see (26)) and Strouhal number St 
in terms of the Reynolds number. The solid (open) circles represent numerically obtained values of 
two-dimensional (three-dimensional) simulations. 

respectively, and the time-averaged Euclidean distance A,,  of a trajectory t e a(p,3D) 
on 4, to the invariant subspace spanned by the two-dimensional Fourier coefficients 
{a$i}2:-o,.. . . , r : 

?=-7. . . . . J .~ 

A,, = f loT dt [ index C of (@, 3Di )? ] .  
'=sD mode 

These observables are numerically determined as a function of the Reynolds number 
for the critical wavenumber k, = 1.75 and displayed in figure 20. The amplitude A,D 
seems to be proportional to (Re- Re,,,,, ,):, while the Strouhal numbers St,,(Re) 
seems to separate from St,,(Re) in a linear manner. It should be noted that a close 
analogy appears to exist between this bifurcation and the Hopf bifurcation discussed 
in 33.3. The quantities St,,, St,,, and A,, of the three-dimensional instability behave 
similarly to the quantities St,, S Z , ~ ,  and A Z D  in the temporal Hopf bifurcation. Hence, 
the investigations identify the onset of three-dimensionality in the periodic two- 
dimensional vortex shedding as a supercritical Hopf bifurcation with respect to the 
spanwise coordinate-in analogy to the onset of the convection rolls in the 
Rayleigh-BCnard problem. The periodic three-dimensional flow may therefore be 
bijectively mapped on a torus where one phase corresponds to the temporal periodicity, 
whereas the other (stationary) phase corresponds to a translation of the (periodic in the 
spanwise direction) velocity field ~ ( ~ 3 , ~ )  along the cylinder axis. In 95.2 a generalized 
Landau model for this bifurcation is proposed. Karniadakis & Triantafyllou (1992) 
also observe a 'soft transition' towards a time-periodic three-dimensional flow. 

The existence of a near wake which is periodic in time and in the spanwise coordinate 
is experimentally confirmed for Re = 200 by Konig (1993). In contrast to the numerical 
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FIGURE 21. Proposed phenomenogram for the cylinder wake at low Reynolds numbers. 

simulations, Konig reports irregular non-periodic fluctuations in the far wake for the 
same Reynolds number. This irregularity may be caused by the experimental 
realization of the end conditions. 

According to Karniadakis & Triantafyllou (1 992), the three-dimensional periodic 
solution becomes unstable in a period-doubling scenario for k, = 2. Our Galerkin 
method confirms the period-doubling process with a strong frequency component at 
;St,, at RecTit, = 285 k 5 and k, = 1.75. At Recrit, = 198, however, a temporal Hopf 
bifurcation is observed. This bifurcation may either be due to a different choice of the 
spanwise wavenumber, or it may be an artefact of the very low resolution K = 1 in the 
spanwise direction. With the available computer resources, no sensitivity analysis in 
terms of K can be carried out. In any case, the properties of the cylinder wake in terms 
of the Reynolds number for a given spanwise wavenumber can be summarized in figure 
21. 

Eventually, at sufficiently large Reynolds numbers, the cylinder wake is irregular. 
For Re = 300 our low-dimensional Galerkin method predicts a strange attractor with 
one positive Liapunov exponent and a fractal dimension of 3.4 (Noack & Eckelmann 
1994 b).  Yet these simulations do not resolve fine-scaled structures. Chaos-theoretical 
evaluations of experimental velocity fluctuations yield a dominant dynamics with a 
similar correlation dimensional between 3 and 3.5 in the transitional Reynolds-number 
range superimposed by a low level of very high-dimensional stochastic noise (Noack 
1990; Noack & Obermeier 1991). 

5. Phenomenological models 
In this section, the instability processes described in $83 and 4 are modelled by simple 

dynamical systems. Some phenomena can already be understood in the framework of 
the Ginzburg-Landau equation ($5.1). In $5.2 a generalization of the Landau model 
is proposed which incorporates the basic features of the first bifurcations. 
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5.1. Ginzburg-Landau model 
The Ginzburg-Landau model has been successfully applied to describe vortex 
formations behind a cone (Papangelou 1992), behind a circular cylinder (AlbarCde 
et al. 1990; AlbarCde & Monkewitz 1992), and behind a torus (Leweke, Provansal 
& Boyer 1993). In this section, the prediction of the Ginzburg-Landau model with 
respect to perturbations with a spanwise periodicity is investigated. 

Let us suppose that the vortex shedding in the near-wake region is described by a real 
amplitude A and a phase 4. A physical interpretation of this idealization is given by 
Noack, Ohle & Eckelmann (1991). Both quantities depend - in this idealization - only 
on the time t ,  and the spanwise coordinate z can be summarized in a complex amplitude 
U = A exp (iq5). The dynamics of the complex amplitude may be modelled by the 
Ginzburg-Landau equation 

13, U = (a+iw) U-(p+iy)lU12U+Ka,, U, (27) 

where a, /I, y and w are real parameters and K represents a real or complex coupling 
constant. The operators a, and a,, denote the first time and second z derivatives, 
respectively. 

For K = 0, (27) is equivalent to the real Landau equations (18) and (19) and the 
parameters CT, /I, y and w have the same meaning. Yet, it must be born in mind that the 
amplitude and phase in the original Landau theory are associated with the global two- 
dimensional eigenmode, whereas these quantities have only a local meaning in the 
Ginzburg-Landau model. 

The coupling constant K is generally adjusted to experimental data. The idealized 
near-wake model of Noack et al. (1991) yields K = v. In reality, spanwise velocity 
fluctuations seem to induce a much larger diffusion in the spanwise direction than 
molecular diffusion. For circular cylinders, Leweke et al. (1993) and AlbarCde & 
Monkewitz (1992) use K = (32 - 20.8i) v. For slender cones, Papangelou (1992) assumes 
a real coupling constant of K = 279v.t In the van der Pol model of Noack et al. (1991), 
the best agreement with experiments was found for a couping constant of around 324~.  

In the following, the stability of the periodic z-independent solution U p )  with 
respect to infinitesimal perturbations U’ is investigated. The first variational form of 
(27) reads 

a, U’ = (n+io) u ’ - ~ + ~ ~ ) ( u ‘ P ) * u ’ * + ~ ~ u ( ” ’ ~ ~ u ’ ) + K ~ , ,  u’, 
where the asterisk denotes complex conjugation. The perturbation U‘ can be 
decomposed into a term V which satisfies the linearized complex Landau equation 

a, v = (a + iw) V -  v+ iy) ( u ( P ) *  V* + 21 W)l2 v), 
and a quantity W which obeys the diffusion equation 

a, w = Ka,, w. 
The I/-term is z-independent and represents a time-periodic phase shift on the limit 
cycle in the complex plane. This contribution neither vanishes nor explodes and is 
immaterial for our stability investigation. The W-term describes the spanwise waviness 

t This value has been derived by the authors for ‘ K ,  = 2 5 0 ( A ~ ) ~ ’ ,  assuming that Papangelou forgot 
the unit ‘Hz’ in the specification of the coupling constant. With K = 279u, Papangelou’s (1992) 
theoretical results could be reproduced. 
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with the wavenumber k,. Without loss of generality, the solution can be factorized in 
the form 

W = constant x exp (- ~ k :  t) exp (ik, z) .  

Hence, the half-time 3 for the spanwise perturbation is given by 5 = -lni/(Kr ki ) .  
Non-dimensionalizing this equation with the approximate shedding period 
T,,, = 0.2D/U and using k,  = 27c/L, we obtain 

This equation describes qualitatively correctly the neutral stability for large spanwise 
wavelengths, i.e. G/Tper+ 00 for L I D +  co. This stability property can easily be 
explained as a diffusion-time effect. The spanwise diffusion in the Landau equation 
requires roughly the time L2/K, to ‘synchronize’ the vortex shedding in a cell of length 
L. Therefore, 

For L = D, Re = Recrat, = 170 and K, = 32u (see Leweke et al. 1993) equation (28) 
yields a very rapid dissipation with 5 z O.46Tp,,. This large dissipation of spanwise 
perturbations with L < D is in qualitative agreement with the results of the Floquet 
analysis. Small spanwise ‘ shedding cells ’ are therefore rapidly synchronized. 

In contrast to the cylinder wake, however, the Ginzburg-Landau model does not 
exhibit exponentially growing three-dimensional perturbations for intermediate 
spanwise wavelengths and sufficiently large Reynolds numbers. This is not surprising, 
since the absolute three-dimensional instability in the cylinder wake is a highly three- 
dimensional process, which cannot be expected to be suitably modelled by the simple 
diffusion term in the Ginzburg-Landau equation. 

is proportional to L2 and inversely proportional to K,  in (28). 

5.2. A low-dimensional model for  the transition scenario 
In this section, the Landau equations (18)-(20) are generalized to include the basic 
dynamical features of the onset of three-dimensionality for the critical spanwise 
wavenumber k, = 1.75. This generalization is purely phenomenological and will 
illustrate how the two- and three-dimensional instability processes may be coupled. 
The form of the proposed equation may be derived from suitable prerequisites 
employing analyticity assumptions, symmetry considerations, and Bogoliubov- 
Krylov-type approximations - much in analogy with Landau’s derivation of his 
equations (see Landau & Lifshitz 1987). 

Let A and 4 be the amplitude and phase associated with the two-dimensional vortex 
shedding and defined in $3.3. Let B be a real amplitude of the three-dimensional 
eigenmode associated with the real eigenvalue cryD) of $3.2. Then, the generalized 
Landau model is proposed to be of the form 

d - A  = rA-BA3,  
dt 

d -B = g B B - p B B 3 ,  
dt 
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where the a, p, y,  w ,  y H ,  aB, PB are assumed to be Reynolds-number independent 
parameters, and cr, vB are the Reynolds-number dependent growth rates. The 
parameters without the subscript B have the same meaning as in $3.3. The new 
parameters ae,PB are assumed to be positive. For the cylinder wake, y B  turns out to 
be positive. For B = 0, this three-dimensional autonomous system reduces to the 
Landau equations (1 8)-(20). 

The solutions and bifurcations of (29t(33) can easily be physically interpreted. In the 
following discussion, A, 4, B are considered to be cylindrical coordinates of a Cartesian 
three-dimensional space. The eigenvalues and Floquet multiplier refer, hence, to the 
system of differential equations in Cartesian coordinates. 

A = B = 0 corresponds to the steady two-dimensional flow. The stability spectrum 
of this fixed point has a complex-conjugated pair of eigenvalues v & iw, which induces 
the temporal Hopf bifurcation in the B = 0 plane at Re = Recrit, and a real eigenvalue 
gB, which induces the instability of the B = 0 plane for Re > Recrit,z and which 
corresponds to cryD). 

For Re > Recrit, the B = 0 plane contains a limit cycle r, corresponding to the two- 
dimensional vortex shedding. The period shall be denoted by T. The Floquet spectrum 
of the periodic solution can easily be derived to be + 1, ,u2 = exp (-2vT) and 
,us = exp ( g B  T ) .  Here, the + 1 multiplier represents the immaterial phase shift on the 
limit cycle. pZ has a modulus less than unity and represents as decaying perturbation 
in the B = 0 plane. This corresponds to the observation in $4.1 that the periodic vortex 
street is asymptotically stable with respect to all two-dimensional perturbations. The 
real multiplier ,u3 leaves the unit circle at Re = Recrit, and causes the instability of the 
periodic solution in the B =  0 plane. This event models the onset of three- 
dimensionality. For Re > Recrit, 2 ,  almost all trajectories converge to limit cycles f,, 
in the planes B = T (aB/pB)i (Re - Recrit, ,);. Note that B has a similar meaning to A,, 
in figure 20. This quantity also grows in proportion to the square root of the Reynolds- 
number difference Re-ReCrit,,. The angular frequency wB of r,, differs from the 
frequency w A  of the limit cycle Tin the B = 0 plane by w B  - wA = (aByB/PB) (Re - Recrit, 
Hence both frequencies deviate linearly in terms of Re-ReCrit,,. This is in complete 
analogy with St, ,  and StsD of figure 20. 

The generalized Landau equations also illustrate the observed one-to-one cor- 
respondence (see $3.2) between the stability and the Floquet spectrum. In the 
neighbourhood of RecTit, ,, the model eigenvalues v3 satisfy ,uB - 1 = exp (cB T )  - 1 z 
gB T = g3 T = aB T(Re- Recrit, J, i.e. ,u3 crosses the unit circle in the complex plane 
whenever gs crosses the imaginary axis. Both events are correlated, since the 
instability of the B = 0 plane is modelled to be independent of the limit-cycle dynamics 
in this plane. Similarly, the three-dimensionality of the cylinder wake is caused by a 
physical process, which is not based on the von Karman vortex street, but can be 
considered as an instability of a steady velocity field. 

One word of caution is order. The proposed three-dimensional model contains only 
two stable limit cycles for Re > RecTit,2. In the cylinder wake, however, there exists a 
continuum of stable three-dimensional periodic wakes just above Recrit, 2. These 
solutions are the same except for a translation 6 in the spanwise direction. Hence, the 
model should be enlarged by a fourth equation 

d -&c= 0. 

Then the original pitchfork bifurcation of B should be interpreted as a Hopf 
bifurcation towards a torus around r with a steady second phase c. The situation is 



Global stability analysis of the cylinder wake 325 

analogous to the pitchfork bifurcation of the Lorenz (1963) model, which describes the 
onset of the Rayleigh-BCnard convection rolls. 

6. Discussion and conclusions 
The first bifurcations of the cylinder wake in terms of the Reynolds numbers are 

investigated in the first global, three-dimensional stability analysis and interpreted in 
the framework of dynamical-systems theory. 

The onset of two-dimensional vortex shedding is found to be a supercritical Hopf 
bifurcation which can be described by the Landau model. These theoretical results 
confirm Sreenivasan et al.’s (1987) and Provansal et al.’s (1987) experimental 
investigation. The predicted critical Reynolds number is Reerit = 54, which exceeds the 
experimental value of Reerit = 47. Yet the discrepancy can be significantly decreased by 
increasing the number of modes in the Galerkin method employed. The experimental 
and theoretical coefficients of the Landau model deviate by a few percent up to 
approximately 20 O/O, depending on the coefficient. This difference is acceptable in view 
of the difficult experimental realization of the transients from the steady to the periodic 
cylinder wake and in view of the accuracy of the 63-dimensional Galerkin method used. 
The physical process behind the onset of vortex shedding is described by Ahlborn & 
Lefranqois (1994). 

The onset of three-dimensionality in the two-dimensional von Karman vortex street 
is identified as a supercritical Hopf bifurcation in the spanwise coordinate. For this 
instability, a generalized Landau model is proposed and is numerically verified. The 
resulting ‘ soft transition’ toward a periodic, three-dimensional flow has also been 
observed in the numerical simulations of Karniadakis & Triantafyllou (1992). The 
absolute three-dimensional instability occurs at Re,,,,, = 170 and introduces a 
spanwise wavelength of Lerit, = 1.W. Both critical quantities, Reerit, and Lcrit, 2, 

deviate only some 5 % from recent experimental investigations of Williamson (1988b) 
and Noack et al. (1993). The physical process behind the onset of three-dimensionality 
seems to be located in the near-wake - as opposed to the stagnation-line or Gortler- 
type instability in the boundary-layer and in contrast to a far-wake process. 
Interestingly, the two-dimensionally unstable steady solution becomes three- 
dimensionally unstable at the same critical point Recrit, ? and Lerit, 2.  Hence, the transition 
seems to result from time-independent wake properties. These wake properties must 
incorporate downward velocity gradients of the near-wake since Triantafyllou (1990) 
concludes for steady parallel shear flows ‘ that three-dimensionality in wakes does not 
appear spontaneously as a result of a three-dimensional absolute instability of the 
homogeneous flow ’. Unfortunately, the topological structures of the three-dimensional 
eigenmodes are very complex and no simple physical model can be proposed for the 
transition in the present publication. 

The Galerkin method confirms the existence of the period-doubling process 
discovered by Karniadakis & Triantafyllou (1992). Yet the spanwise resolution of our 
Galerkin method is limited by the available computer power and no definite conclusion 
regarding the bifurcations for Re > Reerit, can be drawn. The stability diagram for the 
transition clearly shows that the assumed spanwise periodicity has a strong effect on 
the critical Reynolds number and may therefore also affect the kinds of bifurcation in 
the transition scenario. 

In contrast to the theoretical investigations, Williamson (1988 b), Konig, Noack & 
Eckelmann (1993), and Brede et al. (1994) report a discontinuous frequency drop at 
Reerit. 2. This discrepancy may be induced by the experimental realization of the end 
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conditions which was found to be important for Recrit < Re < Recrit, - even for very 
large aspect ratios. These end conditions may induce perturbations which are not 
present in the numerical simulation. The discrepancy may also result from the periodic 
boundary conditions assumed in the spanwise direction. These kinds of condition may 
exclude the excitation of unstable three-dimensional perturbations which do not have 
the assumed wavelength. In this case, the boundary conditions would enforce a 
solution of the Navier-Stokes equation, which is unstable with respect to arbitrary 
perturbations and which can therefore not be observed experimentally. From the 
present experimental and numerical investigations, neither explanation can be 
conclusively verified or falsified. 

The results of our global stability analysis explain a variety of experiments with 
periodically forced cylinders in the regular Reynolds-number range. For Re < 25, the 
stability spectrum has the features of a linear convection-dissipation system and 
contains no pronounced complex-conjugated eigenvalue pair. This explains Sreeni- 
vasan et al.’s (1991) experimental observation that no vortex shedding can be 
excited in this Reynolds-number range. For Recrit < Re < Recrit, 2,  the Floquet analysis 
shows that two-dimensional perturbations decay roughly by a factor of 0.6 during one 
shedding period. There exist a variety of Floquet modes with a similar amplification 
factor. Hence, the periodic forcing is expected to have a large amplitude, giving rise to 
a variety of different vortex shedding modes which depend strongly on the kind of the 
forcing. These expectations are confirmed by Detemple-Laake & Eckelmann’s (1991) 
experiments, in which twelve different forced shedding modes are observed for a 
comparatively large acoustic excitation. Roussopoulos (1993) reports that vortex 
shedding can only be suppressed for Reynolds numbers up to 53, i.e. for a very narrow 
Reynolds-number range. This finding is not surprising in view of a continuum of 
unstable three-dimensional eigenmodes, which represent local vortex shedding cells. 

The stability analysis also sheds some light on recent experimental studies of the 
laminar cylinder wake. The two-dimensional vortex shedding is found to be only 
neutrally stable with respect to three-dimensional perturbations for all Reynolds 
numbers considered. This neutral stability explains why laminar, parallel vortex 
shedding is experimentally very difficult to achieve. Small inhomogeneities in the 
experimental set-up easily give rise to large-scale deformations of the vortices, and 
these perturbations do not decay. Typically, chevron patterns and oblique shedding are 
experimentally observed unless particular end conditions are used (Williamson 1989 ; 
Konig et al. 1990, 1992; Hammache & Gharib 1991). In contrast, structures which are 
not larger than the cylinder diameter are predicted to decay rapidly and are not 
experimentally observed (Gerrard 1966). 

Summarizing, the present investigation allows the interpretation of many ex- 
perimental observations of the cylinder wake within the framework of a global stability 
theory. It also revealed an interesting relationship between the stability and Floquet 
theory. 
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Appendix A. Function systems for the Galerkin approximation 
In this section the radial, azimuthal, and spanwise modes, RI"), Gj(q5), and Z,(z)  are 

defined. The construction of these modes from mathematical completeness arguments 
and physical considerations is described by Noack (1 992) and Noack & Eckelmann 
( 1 9 9 4 ~ ) .  

The radial mode Rd") is the product of an exponentially decaying factor, a polynomial 
PiK) of degree i, a slowly increasing factor r+i and a factor which guarantees the no-slip 
condition at the cylinder: 

The scaling parameter 8'") is given by 

where the constant a(K) is determined from an estimate of the boundary-layer thickness : 

2.45 for K = 1, 
2.95 for K = 2. 

a ( K )  = 

The Reynolds-number-independent polynomials PiK) are determined so that the radial 
modes satisfy the orthonormality relationship 

The system of azimuthal modes coincide with the trigonometric system for Re  + 0. 
With increasing Reynolds number the resolution in the wake region around q5 = 0 is 
increased, if the radial resolution I i s  larger than the azimuthal one J. Thejth azimuthal 
mode is defined by 

sin(jh(q5)) for j > 0, 

where h represents the azimuthal coordinate transformation 

h(q5) = q5 + y sin q5(1+ cos 4) 
and the distortion parameter y is defined by 

I- J 
I 

y = - tanh (Rel100). 

For J > I, (A 7) is replaced by y = 0, since J > I already guarantees a good azimuthal 
resolution of the wake region. 
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The system of spanwise modes coincides with the complete, orthonormal trig- 
onometric system for L-periodic functions except for the L-independent normalization 
factor : [ isin(2nkzlL) for k > 0, 

for k = 0, 

Appendix B. Model equation for the spectrum at low Reynolds numbers 
The linear convection-diffusion equation 

a ,u+a ,u  = vazsu, 

roughly models the convection and dissipation of a perturbation u in the wake, x being 
the coordinate in the downstream direction; v is the viscosity and corresponds to 1/Re 
in the linearized Navier-Stokes equation. This partial differential equation has the 
particular solution 

u = sin (k,(x - t ) )  e-@ t ,  

which represents travelling decaying waves with the wavenumber k ,  and the growth 
rate B = - vk:. The circular frequency w for a fixed position x is related to the 
wavenumber by 

Hence, the frequency w increases in proportion to the square-root of the (negative) 
growth rate B. This W B  relationship qualitatively resembles the square-root 
dependency between St and B of the outermost eigenvalues in figure 2. 

w = k,  = (- B / V ) t  
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